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An irreversible process is a process that cannot

occur spontaneously in the opposite direction.

Figure 2

Examples:
> the warming of your hands by a hot cup of tea;
» the breaking of a glass;

» the hatching of an egg.
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What makes these processes irreversible? It’s not —
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The order of the object has changed. The object is more
disordered.
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The disorder of system is a state property, just like
pressure and temperature, that depends only on

the current state and not how it got there.
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the current state and not how it got there.
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The measure of disorder is known as entropy.
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The definition of the change in entropy of a closed

system from one state to another is:

f
AS:Sf—S,-:/ %Q
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And remember: it doesn’t matter how the system gets from
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And remember: it doesn’t matter how the system gets from
one state the next.

» For a reversible process: AS = 0

» For an irreversible process: AS > 0
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Calculate the integral for the reversible process—it’s much
easier!
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In a closed system, the entropy always increases
for an irreversible process, and remains the same

for a reversible process.

AS>0
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In a closed system, the entropy always increases
for an irreversible process, and remains the same

for a reversible process.

AS >0 (2)

This is the Second Law of Thermodynamics.
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for a reversible process.

AS >0 (2)

This is the Second Law of Thermodynamics.
Entropy always increases or stays the same in any process.
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A box with five adiabatic sides contains an ideal gas with an
initial temperature 7. The sixth side is placed in contact
with a reservoir with a constant temperature 7, > Ty. Why

Entropy

Engines

must the entropy change of the universe always be
increasing as the box warms?
(a) Entropy will always be increasing since the work done
on the gas in the box is negative.
(b) Entropy will always be increasing since the
temperature of the box is always < T5.
(c) Entropy will always be increasing since this process is
reversible.
(d) Entropy will always be increasing since the
temperature of the box is always greater than absolute
Zero.

(e) Entropy will always be increasing since in any process

entropy increases.
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» Every engine needs a working substance (water/steam,

air, gasoline)

» The working substance moves in a cycle composed of

strokes




Engines

How much work W can be done with a given

amount of heat Qg ?

Perfect engine:
e Tu ) total conversion

of heat to work
l Qu

q W(=Qun)
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> An ideal engine is one that does not suffer from waste
(friction, turbulence).
> A perfect engine is one that converts 100% of its heat

to work.
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Q=0

PR ——

> An ideal engine is one that does not suffer from waste
(friction, turbulence).
> A perfect engine is one that converts 100% of its heat

to work.

Is this possible?
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Let’s look at the Carnot engine and compute its

efficiency.

Schematic of
a Carnot engine

(G

Heat is Qu l
‘ :}3 w

l Work is done

Heat is lost. Q.. by the engine.
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» Heat is absorbed by the working substance

> Some energy is converted to work, some is dumped as

waste
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O Positive work
is done.
Schematic of
a Carnot engine 7

(G
0 Volume
Heat is Qu l
bsorbed.

Adiabatic:
no heat

Work is done
Heat is lost. Qi l by the engine.

Isothermal:

Negative work heat is lost

is done.

» Heat is absorbed by the working substance

» Some energy is converted to work, some is dumped as

waste
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» Measuring the heat transfer can be tricky

» Let’s analyze the cycle and try to compute this ratio
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Stages of a
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Carnot engine

Isothermal:

/ heat is absorbed
0u Positive work
is done.

Adiabatic: Refrigerators
no heat

istics of Entropy

Pres
Pressure

Volume — A Isothermal:

Adiabatic: Negative work heatislost
no heat is done.
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@
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AS = ASa—)b + ASb—)c + ASc—)a' + ASd—)a
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Compute the change in entropy for a full cycle:

Stages of a
Carnot engine

Adiabatic:
no heat

Positive work
is done.

Pressure
Pressure

Volume Isothermal:

Adiabatic: Negative work heat is lost

no heat is done.
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Compute the change in entropy for a full cycle:

Stages of a
Carnot engine

Positive work
is done.

Pressure

Volume

no heat
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Adiabatic:

Adiabatic:
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Compute the change in entropy for a full cycle:

Stages of a
Carnot engine

Positive work

Adiabatic:
no heat
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is done.

Pressure
Pressure

Volume Isothermal:

Adiabatic: Negative work heat is lost

no heat is done.
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Adiabatic: Refrig rs

no heat

Positive work
is done.

Qu Statistics of Entropy
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Volume Isothermal:

Adiabatic: Negative work heat is lost
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The efficiency of the Carnot engine depends only

on the temperatures of the hot and cold reservoirs.

T,
e=1--L
Ty

a Isothermal:

/ heat is absorbed
QO Positive work
is done.

Schematic of
a Carnot engine

om0
Heat is Qu l
Adiabatic: absorbed.

-

Work is done
Heat is lost. Q.. l by the engine.

Isothermal:

Negative work Taatiallost

is done.
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Qu Positive work
is done.

Pressure

» Isothermal expansion and

compression (constant 7

» Adiabatic expansion and

Adiabatic:
no heat

compression (Q = 0)

Pressure

0 Volume \_ |sothermal:

Negative work heat is lost

is done.
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The Stirling engine has lower efficiency but is

more practical.

Stages of a
Stirling engine
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more practical.

Engines

Refrig rs

Stages of a

e . Statistics of Entrop;
Stirling engine atistics of Entropy

Pressure

Volume
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» Isothermal expansion and compression (constant 7°)

» Constant volume heating/cooling (Q # 0)
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During the power stroke of an internal combustion engine,
the air-fuel mixture is ignited and the expanding hot gases
push on the piston. Assuming the engine exhibits the

Entropy

Engines

highest efficiency possible, which of the following
statements concerning the exhaust gas must be true to avoid
violating the second law of thermodynamics?
(a) The exhaust gas must be hotter than the outside air
temperature.
(b) The exhaust gas must be at the same pressure as the
outside air.
(¢) The exhaust gas must be cooled to the same
temperature as the outside air.
(d) The exhaust gas must be cooled below the temperature
of the outside air.
(e) Real engines will always violate the second law of

thermodynamics.
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Consider the various paths shown on the pressure-volume
graph. By following which of these paths, does the system
do the most work?

Pressure

Volume

(a) 1to2to4

(b) 1to 4

(c) 1to3to4

(d) Each of these paths results in the same amount of work
done.
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An ideal refrigerator operates in reverse of an
engine.

Schematic of
a refrigerator

%

Qu T Heat
is lost.

W Il
Work is done Heat is
on the engine. L T absorbed.

e
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Schematic of
a refrigerator

)
Qu T Heat
is lost.
W Il ‘
Work is done Heat is
on the engine. L T absorbed.
am
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We put in work which draws heat from the cold reservoir
and dumps it into the hot reservoir.
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The coefficient of performance is defined in a

similar way as before:

~ whatwe want Q|
~ what we pay for  |W|
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The coefficient of performance is defined in a

similar way as before:

_ what we want orl 10

~ what we pay for  |W|  |Qn| — |O¢]
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. . . Entropy
The coefficient of performance is defined in a
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similar way as before: Refrigerators
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what we want  |Qz|  |Qf
what we pay for — |W|  |Qn| — |0Q¢]

We can simplify this further by using % L
17,

K=_—t_
Tn— T,




Refrigerators R

Thermodynamics

You are repairing a window-style air conditioner in a closed Entropy
workroom. You succeed in getting it to work, but are called AL
away soon after you turn it on. Unfortunately, you are Stisies o Entrons
unable to return for several hours to turn it off. Assuming ’
that it was running as efficiently as possible while you were
away, how has the temperature of the workroom changed in

your absence?
(a) The room is somewhat cooler than before I left.
(b) The room is slightly cooler than before I left.
(¢) The temperature of the room has not changed.
(d) The room is warmer than before I left.

(e) The air near the ceiling will be very warm, but the air
around the air conditioner will be very cool.
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Entropy can be calculated by considering the
possible arrangements of atoms/molecules in a

given system.
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If we have six molecules in a box, what are their possible
combinations?
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In mathematics, the number of combinations of N

things taken k at a time can be computed as:

N N
(k) T KN =) @

For example: given three fruit (apple, orange, banana), how

many combinations of two can be made?
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In mathematics, the number of combinations of N

things taken k at a time can be computed as:

N N
(k) T KN =) @

For example: given three fruit (apple, orange, banana), how

many combinations of two can be made?
> apple + orange, apple + banana, orange + banana = 3

> () =3/RI3-2)]=3x2x1/(2x1x1)=3.
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Given a box of 6 particles, how many

configurations are there if we split them left/right?

Copyright 2014 ohn Wiley & Sons, Inc.Allights reserved.
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Seven: 6-0, 5-1, 4-2, 3-3, 2-4, 1-5, 0-6.
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Seven: 6-0, 5-1, 4-2, 3-3, 2-4, 1-5, 0-6.
Each of these configurations can be done in one or more
ways.
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For the configuration shown (4-2), how many

combinations are there?
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For the configuration shown (4-2), how many

combinations are there?

> W= (5 =6/24l =6x5/2=15
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For the configuration shown (4-2), how many

combinations are there?

Statistics of Entropy

> W= (5 =6/24l =6x5/2=15

» W is called the multiplicity of the 4-2 configuration.
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For the configuration shown (4-2), how many

combinations are there?
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» W= (5)=6/214l =6x5/2=15
» W is called the multiplicity of the 4-2 configuration.

» Each of the 15 combinations is called a microstate
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For the configuration shown (4-2), how many

combinations are there?
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v

W= (5)=6/214l =6 x5/2 =15

v

W is called the multiplicity of the 4-2 configuration.

Each of the 15 combinations is called a microstate

v

v

The configuration (4-2) is known as the macrostate
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We can list a number of important features:
» The more evenly distributed the configuration, the
higher the multiplicity.
» The more microstates for a configuration, the more
likely that configuration.
» The lower the multiplicity, the lower the entropy

» The higher the multiplicity, the higher the entropy
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Thermodynamics

We can list a number of important features: :
ntropy

» The more evenly distributed the configuration, the

Ref

higher the multiplicity.

Statistics of Entropy

» The more microstates for a configuration, the more
likely that configuration.

» The lower the multiplicity, the lower the entropy

» The higher the multiplicity, the higher the entropy

Table 20-1 Six Molecules in a Box

Calculation Entropy
Configuration Multiplicity W of W 1072 J/K
Label ny n, (number of microstates) (Eq. 20-20) (Eq.20-21)
1 6 0 1 6!/(6! 01) =1 0
i 5 1 6 6l(5! 1) =6 247
jits 4 2 15 6!/(4! 2!) =15 3.74
v 3 3 20 6!/(3! 31) =20 4.13
\% 2 4 15 6!/(2! 4!) =15 3.74
VI 1 5 6 6l/(1! 5) =6 247
VII 0 6 1 6!/(0! 6!) =1 0

Total = 64

Copyright © 2014 John Wiley &Sons, Inc. All rights reserved.
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To obtain the entropy of a system, we use the

Jamous Boltzmann entropy equation:

S=klnW (5)
with k = 1.381 x 1023 J/K the Boltzmann constant.

Tahle 20-1 Six Molecules in a Box

Calculation Entropy
Configuration Multiplicity W of W 1072 J/K
Label n n, (number of microstates) (Eq. 20-20) (Eq.20-21)
1 6 0 1 6/(6! 01) =1 0
11 5 1 6 6!/(5! 1) =6 2.47
11 4 2 15 61/(4!1 21) =15 374
v 3 3 20 6!/(3! 31) =20 413
v 2 4 15 6!1/(2! 41) =15 3.74
VI 1 5 6 6!/(1! 51y =6 247
VII 0 6 1 6!/(0! 6!) =1 0

Total = 6_4
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If the multiplicity is very large, we can compute S
Entropy

with Stirling’s approximation,
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InN!~ NInN — N. (6)
(different Stirling from the engine guy)

Table 20-1 Six Molecules in a Box

Calculation Entropy
Configuration Multiplicity W of W 1072 J/K
Label ny ny (number of microstates) (Eq. 20-20) (Eq.20-21)
1 6 0 1 6l/(6! 01 =1 0
11 5 1 6 6l(5! 1) =6 2.47
11 4 2 15 61/(4! 21) =15 3.74
v 3 3 20 6!/(3! 31) =20 413
v 2 4 15 61/(2! 41) =15 3.74
VI 1 5 6 6!/(1! 51y =6 2.47
VII 0 6 1 6!/(0! 6!) =1 0

Total = 6_4
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In the system shown, @ S
: Statistics of Entropy

(a) the number on a die corresponds to a microstate, and
the numbers on all the dice (1, 2, 4, 6) correspond to
the macrostate;

(b) the number on a die corresponds to a microstate, and
the sum of the numbers on all the dice corresponds to
the macrostate;

(c) the numbers on all the dice correspond to a microstate,
and the sum of the numbers on all the dice corresponds
to the macrostate;

(d) the sum of the numbers on all the dice corresponds to a
microstate, and the numbers on all the dice correspond

to the macrostate.
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