
Chapter 1 - Temperature and Heat

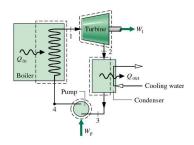
Chapter 1 (Volume 2) -Temperature and Heat

Thermal Expansion

Absorption of Heat

Heat Transfer

Temperature

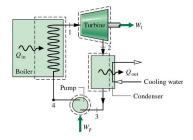

Mechanisms

"It doesn't make a difference what temperature a room is, it's always room temperature."

-Steven Wright

David J. Starling Penn State Hazleton Fall 2013

Thermodynamics is the study of thermal (or internal) energy of systems.

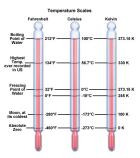


Temperature

Thermal Expansion

Absorption of Heat

Thermodynamics is the study of thermal (or internal) energy of systems.


Engines are described using the concepts of thermodynamics, such as heat and temperature.

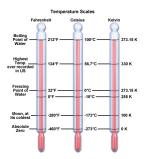
Temperature

Thermal Expansion

Absorption of Heat

Temperature is a characterization of the average thermal energy of a substance which correlates to the concepts of hot (more E) and cold (less E).

Temperature	°C	°F
Boiling point of water	100	212
Normal body temperature	37.0	98.6
Accepted comfort level	20	68
Freezing point of water	0	32
Zero of Fahrenheit scale	≈ -18	0
Scales coincide	-40	-40


Temperature

Thermal Expansion

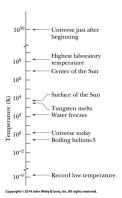
Absorption of Heat Heat Transfer

Mechanisms

Temperature is a characterization of the average thermal energy of a substance which correlates to the concepts of hot (more E) and cold (less E).

Temperature	°C	°F
Boiling point of water	100	212
Normal body temperature	37.0	98.6
Accepted comfort level	20	68
Freezing point of water	0	32
Zero of Fahrenheit scale	≈ −18	0
Scales coincide	-40	-40

The temperature of an object determines how it behaves (e.g., solid, liquid, gas).

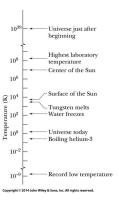

Temperature

Thermal Expansion

Absorption of Heat Heat Transfer

Mechanisms

Temperature can be measured in many ways; in physics, we use the kelvin scale.

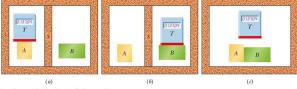


Temperature

Thermal Expansion

Absorption of Heat

Temperature can be measured in many ways; in physics, we use the kelvin scale.

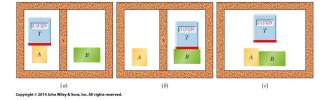

To go from kelvin to degrees Celsius, $T_C = T - 273.15^{\circ}$. To go from degrees Celsius to degrees Fahrenheit, $T_F = \frac{9}{5}T_C + 32^{\circ}$.

Temperature

Thermal Expansion

Absorption of Heat

The Zeroth Law of Thermodynamics: Two bodies are in thermal equilibrium if and only if they have the same temperature.

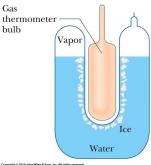

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Temperature

Mechanisms

Thermal Expansion

The Zeroth Law of Thermodynamics: Two bodies are in thermal equilibrium if and only if they have the same temperature.

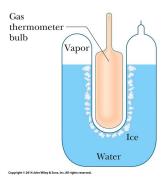

To measure the temperature of a body, we need to put it in thermal contact with a temperature meter.

Temperature

Thermal Expansion

Absorption of Heat

Temperature is defined using two universal points: the triple point of water (273.16 K, 611.73 Pa) and absolute zero (0 K, 0 Pa).

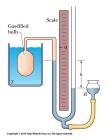

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Temperature

Thermal Expansion

Absorption of Heat

Temperature is defined using two universal points: the triple point of water (273.16 K, 611.73 Pa) and absolute zero (0 K, 0 Pa).

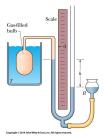

The triple point is the pressure and temperature at which water exists as a gas, liquid *and* solid simultaneously.

Temperature

Thermal Expansion

Absorption of Heat

A constant-volume gas thermometer uses a gas-filled bulb of unknown temperature along with a mercury manometer.



Temperature

Thermal Expansion

Absorption of Heat

A constant-volume gas thermometer uses a gas-filled bulb of unknown temperature along with a mercury manometer.

We can now relate the pressure in the bulb to its temperature using an unknown constant: T = Cp.

Temperature

Thermal Expansion

Absorption of Heat

If we also measure at the triple point (for reference), we get $T_3 = Cp_3$. Taking the ratio:

$$\frac{T}{T_3} = \frac{p}{p_3}$$

$$T = T_3 \left(\frac{p}{p_3}\right)$$

$$= 273.16 \left(\frac{p}{p_3}\right)$$

Temperature

Thermal Expansion

Absorption of Heat

If we also measure at the triple point (for reference), we get $T_3 = Cp_3$. Taking the ratio:

$$\frac{T}{T_3} = \frac{p}{p_3}$$

$$T = T_3 \left(\frac{p}{p_3}\right)$$

$$= 273.16 \left(\frac{p}{p_3}\right)$$

▶ Unfortunately, this result is *gas dependent*.

Temperature

Thermal Expansion

Absorption of Heat

If we also measure at the triple point (for reference), we get $T_3 = Cp_3$. Taking the ratio:

$$\frac{T}{T_3} = \frac{p}{p_3}$$

$$T = T_3 \left(\frac{p}{p_3}\right)$$

$$= 273.16 \left(\frac{p}{p_3}\right)$$

- ▶ Unfortunately, this result is *gas dependent*.
- ▶ How can we remove the effect of the gas?

Temperature

Thermal Expansion

Absorption of Heat

If we also measure at the triple point (for reference), we get $T_3 = Cp_3$. Taking the ratio:

$$\frac{T}{T_3} = \frac{p}{p_3}$$

$$T = T_3 \left(\frac{p}{p_3}\right)$$

$$= 273.16 \left(\frac{p}{p_3}\right)$$

- ▶ Unfortunately, this result is *gas dependent*.
- ▶ How can we remove the effect of the gas?

$$T = 273.16 \lim_{gas \to 0} \left(\frac{p}{p_3}\right)$$

Temperature

Thermal Expansion

Absorption of Heat

Unsatisfied with the Celsius and Kelvin temperature scales, you decide to create your own. On your temperature scale, the ice point is 0.0° M and the steam point is at 366.1° M, where "M" stands for "my scale." What temperature on your scale corresponds to 0 K?

- (a) -273.1°M
- **(b)** -500.0° M
- (c) -1000.0° M
- (d) -732.4°M
- (e) -633.9°M

Temperature

Thermal Expansion

Absorption of Heat

Thermal Expansion

Absorption of Heat

Heat Transfer Mechanisms

We know that gases expand when heated—but so do solids!

$$\Delta L = L\alpha \Delta T$$

Steel $T = T_0$ (a)

Different amounts of expansion or contraction can produce bending.

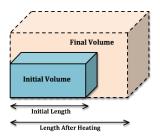
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Thermal Expansion

We know that gases expand when heated—but so do solids!

$$\Delta L = L\alpha \ \Delta T$$

Each solid has a unique **linear expansion coefficient** α ; i.e., different metals expand different amounts for the same temperature change.


Temperature

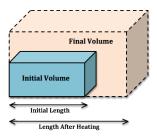
Thermal Expansion

Absorption of Heat

For liquids and solids, we consider their volume:

$$\Delta V = V\beta \, \Delta T$$

Temperature


Thermal Expansion

Absorption of Heat

Thermal Expansion

For liquids and solids, we consider their volume:

$$\Delta V = V\beta \, \Delta T$$

Here, $\beta = 3\alpha$ is the volume expansion coefficient.

Temperature

Thermal Expansion

Absorption of Heat

day at this temperature?

The length of an aluminum pendulum in a certain clock is 0.2480 m on a day when the temperature is 23.30°C. This length was chosen so that the period of the pendulum is exactly 1.000 s. The clock is then hung on a wall where the temperature is -5.00°C and set to the correct local time. Assuming the acceleration due to gravity is the same at both locations, by how much time is the clock incorrect after one

- (a) 69.3 s
- **(b)** 115 s
- (c) 87.2 s
- (d) 31.0 s
- **(e)** 11.5 s

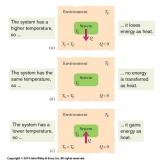
Temperature

Thermal Expansion

Absorption of Heat

An artist wishes to insert a gold pin into a hole in an iron sculpture and have it held permanently. The pin is slightly larger than the hole. The coefficient of linear thermal expansion of gold is slightly larger than that of iron. Consider the following options:

- (a) increase the temperature of the pin and the sculpture by the same amount:
- (b) decrease the temperature of the pin and the sculpture by the same amount;
- (c) increase the temperature of the pin and decrease the temperature of the sculpture;
- (d) decrease the temperature of the pin and increase the temperature of the sculpture;
- (e) none of the above.

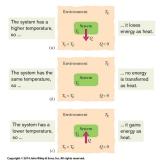

Which of the choices would most likely accomplish the artist's task?

Temperature

Mechanisms

Thermal Expansion

Heat Q is energy measured in joules (J) that is transferred between two objects due to a temperature difference.



Temperature

Mechanisms

Thermal Expansion

Heat Q is energy measured in joules (J) that is transferred between two objects due to a temperature difference.

An object doest not *contain* heat; instead, energy is transferred as heat.

Temperature

Mechanisms

Thermal Expansion

Chapter 1 (Volume 2) -Temperature and Heat

Energy always flows from hot to cold.

Temperature

Thermal Expansion

Absorption of Heat

Energy always flows from hot to cold.

Heat is also measured in calories (cal), kilocalories (kcal or Cal) and British thermal units (Btu):

$$1 \text{ cal} = 3.968 \times 10^{-3} \text{ Btu} = 4.1868 \text{ J}$$

Temperature

Thermal Expansion

Absorption of Heat

When heat is absorbed by an object, its temperature increases linearly. The proportionality is called heat capacity C.

$$Q = C \Delta T = C(T_f - T_i)$$

Temperature

Thermal Expansion

Absorption of Heat

When heat is absorbed by an object, its temperature increases linearly. The proportionality is called heat capacity C.

$$Q = C \Delta T = C(T_f - T_i)$$

Heat capacity depends on the material, but also on its mass:

$$C = cm \to c = C/m = \frac{Q}{m \,\Delta T}$$

We call c the specific heat of the material, with units of J/kg-K or cal/g-K.

Temperature

Thermal Expansion

Absorption of Heat

In this way, specific heat is more general and can be tabulated for different substances.

Substance	Specific Heat		Molar Specific Heat
	cal J g·K kg·K	J	J
		mol·K	
Elemental Solids			
Lead	0.0305	128	26.5
Tungsten	0.0321	134	24.8
Silver	0.0564	236	25.5
Copper	0.0923	386	24.5
Aluminum	0.215	900	24.4
Other Solids			
Brass	0.092	380	
Granite	0.19	790	
Glass	0.20	840	
Ice (-10°C)	0.530	2220	
Liquids			
Mercury	0.033	140	
Ethyl			
alcohol	0.58	2430	
Seawater	0.93	3900	
Water	1.00	4187	

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Temperature

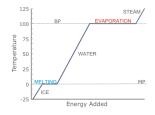
Thermal Expansion

Absorption of Heat

In this way, specific heat is more general and can be tabulated for different substances.

Substance	Specific Heat		Molar Specific Heat
	cal g·K	$\frac{J}{kg \cdot K}$	J mol·K
Lead	0.0305	128	26.5
Tungsten	0.0321	134	24.8
Silver	0.0564	236	25.5
Copper	0.0923	386	24.5
Aluminum	0.215	900	24.4
Other Solids			
Brass	0.092	380	
Granite	0.19	790	
Glass	0.20	840	
Ice (-10°C)	0.530	2220	
Liquids			
Mercury	0.033	140	
Ethyl			
alcohol	0.58	2430	
Seawater	0.93	3900	
Water	1.00	4187	

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

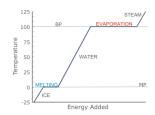

note: molar specific heat does not vary much, $\approx 8\%$

Temperature

Thermal Expansion

Absorption of Heat

When an object undergoes a phase change, heat is added to the system but the temperature remains fixed.



Temperature

Thermal Expansion

Absorption of Heat

When an object undergoes a phase change, heat is added to the system but the temperature remains fixed.

How much energy needs to be added to completely transform the material?

$$Q = Lm$$

L is the heat of transformation measured in J/kg.

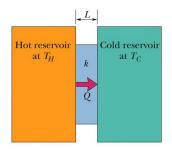
Temperature

Thermal Expansion

Absorption of Heat

Why is water often used as a coolant in automobiles, other than the fact that it is abundant?

- (a) Water expands very little as it is heated.
- (b) The freezing temperature of water has a relatively large value.
- (c) The specific heat of water is relatively small and its temperature can be rapidly decreased.
- (d) The specific heat of water is relatively large and it can store a great deal of thermal energy.
- (e) Water does not easily change into a gas.

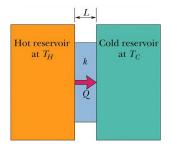

Temperature

Thermal Expansion

Absorption of Heat

Heat Transfer Mechanisms

Conduction is the transfer of energy via direct contact of two objects at different temperatures.



Temperature

Thermal Expansion

Absorption of Heat

Conduction is the transfer of energy via direct contact of two objects at different temperatures.

Here, the object (blue) has energy flowing through it at a steady rate.

Temperature

Thermal Expansion

Absorption of Heat

Empirical determination of the energy transfer rate shows a dependence on surface area and material:

$$P_{cond} = \frac{Q}{t} = kA \frac{T_H - T_C}{L} \tag{1}$$

Temperature

Thermal Expansion

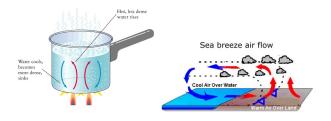
Absorption of Heat

Heat Transfer Mechanisms

Empirical determination of the energy transfer rate shows a dependence on surface area and material:

$$P_{cond} = \frac{Q}{t} = kA \frac{T_H - T_C}{L} \tag{1}$$

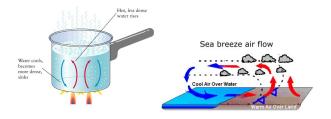
- \triangleright *k* is the thermal conductivity of material
- ► A is the face area of the slab
- L is the thickness


Temperature

Thermal Expansion

Absorption of Heat

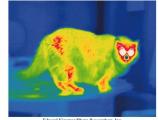
Heat Transfer Mechanisms


Convection is the transfer of energy due to fluid in motion caused by a temperature gradient.

Temperature

Thermal Expansion
Absorption of Heat

Convection is the transfer of energy due to fluid in motion caused by a temperature gradient.


- ▶ atmospheric, winds
- ocean currents
- ▶ flames

Temperature

Thermal Expansion
Absorption of Heat

Radiation is the transfer of energy via electromagnetic waves (visible light, infrared, x-rays, etc.). Warm objects glow and emit energy at a rate of:

$$P_{rad} = \sigma \epsilon A T^4 \qquad (2)$$

Edward Kinsman/Photo Researchers, Inc.

Temperature

Thermal Expansion Absorption of Heat

Radiation is the transfer of energy via electromagnetic waves (visible light, infrared, x-rays, etc.). Warm objects glow and emit energy at a rate of:

$$P_{rad} = \sigma \epsilon A T^4 \qquad (2)$$

- $\sigma = 5.6704 \times 10^{-8} \text{ W/m}^2\text{-K}^4 \text{ (Stefan-Boltzmann)}$
- ightharpoonup is the emissivity of the object's surface
- ► A is the object's surface area

Temperature

Thermal Expansion

Absorption of Heat

Chapter 1 (Volume 2) -

Temperature and Heat

During the summer, sunlight warms the land beside a cool lake. This warming is followed by a breeze blowing from the direction of the lake toward the land. Why?

- (a) Air naturally flows from cooler locations to warmer locations.
- (b) The lake must be west of the land because winds typically blow from the west.(c) The land is usually cooler near a lake, so this is a case
- (c) The land is usually cooler near a lake, so this is a case of temperature inversion which causes air to blow from the direction of the lake.
- (d) Warm air rises above the land and cooler air moves downward, appearing to come from the direction of the lake, but it is really from above the land.
- (e) Warm air rises from above the land and is replaced by the air blowing in from the lake.

Temperature
Thermal Expansion

Absorption of Heat Heat Transfer Mechanisms