Practice Exam #1

Do not flip the page until told to do so.

Name: _____

Problem	Grade	Points Possible
1		5
2		5
3		5
4		15
5		15
6		15
Total		60

Useful Equations

$$\vec{F}_q = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$x(t) = x_0 + v_{0x}t + \frac{1}{2}a_x t^2$$

$$\vec{E}_q = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

$$\vec{E}_q = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

$$\vec{F}_q = q\vec{E}$$

$$\vec{F}_q = q\vec{E}$$

$$\vec{F}_q = q\vec{E}$$

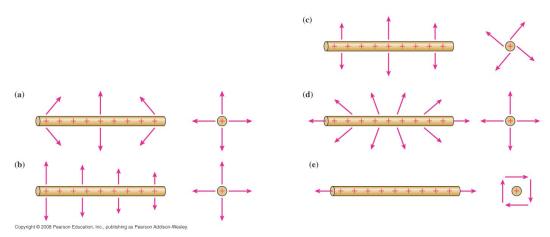
$$\vec{p} = q\vec{d}$$

$$\vec{r}_p = \vec{p} \times \vec{E}$$

$$U_p = -\vec{p} \cdot \vec{E}$$

$$\vec{F}_i = m\vec{a} = \frac{d\vec{p}}{dt}$$

$$\vec{p} = m\vec{v}$$


$$\vec{P}_q = q\vec{E}$$

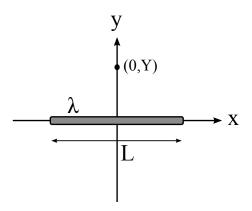
$$\vec{F}_q = q$$

Question 1: A positively charged ball is brought close to a fixed, electrically neutral conductor.

- (a) What happens to the charge in the conductor?
- (b) The conductor is then grounded with a wire while the ball is kept close. When the wire is then disconnected, what is the charge state (+, or neutral) of the conductor?
- (c) If the conductor stays connected to the ground wire while the charged ball is removed, how does the situation differ?

Question 2: Below is a uniformly charged rod of *finite* length L. Which of the following are possible electric fields for the charged rod?

Question 3: Two different and arbitrary Gaussian surfaces are drawn enclosing a single negative charge -q. Circle all that apply.


- (a) The flux through both surfaces is positive.
- (b) The flux through both surfaces is negative.
- (c) The flux through each surface is equal.
- (d) The electric field is perpendicular to the surfaces.
- (e) The Gaussian surfaces must intersect.

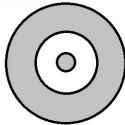
 ${\bf Question}$ 4: Three charges are dispersed in the plane:

- $q_1 = +10 \text{ nC at } (0.0, 0.0) \text{ cm},$
- $q_2 = -10 \text{ nC at } (1.0, 1.0) \text{ cm},$
- $q_3 = +5$ nC at (1.0, -1.0) cm.

What is the Electric Field at (1.0, 0.0) cm? What is the *force* on an electron placed at this location? (you can give magnitude and direction or component form.)

Question 5: A uniformly charged rod of length L and charge density λ sits on the x-axis. Its center is at x=0 so that the y-axis bisects the rod. Set up but do not solve the integral for the electric field \vec{E} at point (0,Y).

Question 6: A uniformly charged cylinder of radius R and charge density ρ sits inside a hollow cylinder that is uniformly charged with charge density of $-\rho$ and has inner and outer radii of R_i and R_o , respectively. Find the electric field in all four regions:


I: $0 \le r \le R$

II: $R \le r \le R_i$

III: $R_i \le r \le R_o$

IV: $R_o \le r \le \infty$

Cross Section View:

