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“The pendulum of the mind oscillates between sense and
nonsense, not between right and wrong.”
-Carl Gustav Jung
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Oscillatory motion is motion that is periodic in Energy in SHO

Pendulums

time (e.g., earthquake shakes, guitar strings).

Damped Oscillations
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Simple Harmonic Oscillator (SHO)

Oscillatory motion is motion that is periodic in

time (e.g., earthquake shakes, guitar strings).
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The period T measures the time for one oscillation.

Chapter 15 - Oscillations

Simple Harmonic
Oscillator (SHO)

E y in SHO

Pendulums

Damped Oscillations




Simple Harmonic Oscillat()r (SHO) Chapter 15 - Oscillations

Simple Harmonic

Oscillatory motion that is sinusoidal is known as Oscillator (SHO)

Energy in SHO

Simple Harmonic Motion.
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x(t) = xp, cos(wt)

=

Displacement
Lo
‘I_Yi7




Simple Harmonic Oscillator (SHO) Chapter 15 - Oscillations

Simple Harmonic

Oscillatory motion that is sinusoidal is known as cillator (SHO)

Energy in SHO

Simple Harmonic Motion.

Pendulums

Damped Oscillations

x(t) = xp, cos(wt)

=

Displacement
U] .
= = = 2

AN
S

(a)

X 18 the maximum displacement




Simple Harmonic Oscillator (SHO) Chapter 15 - Oscillations

Simple Harmonic

Oscillatory motion that is sinusoidal is known as Oscillator (SHO)
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Simple Harmonic Motion.
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x(t) = xp, cos(wt)

=

Displacement
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X, 1s the maximum displacement
w is the angular frequency: w = 2nf = 27/T.
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Two oscillators can have different frequencies, or

Simple Harmonic
Oscillator (SHO)

different phases:

Energy in SHO
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Damped Oscillations

x(1) = x, cos(wt + @)
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Simple Harmonic Oscillator (SHO)

Sinusoidal oscillations are described by these

definitions:

x(t) = xpycos(wt+ @)

1/f
w = 2af

ﬂ
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Simple Harmonic Oscillator (SHO)

Sinusoidal oscillations are described by these

definitions:
x(t) = xpycos(wt+ @)
Y
w = 27f

» x in meters
» T in seconds
» fin Hertz (1/s)

» w in rad/s
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Simple Harmonic
Oscillator (SHO)

Since we know the position of an oscillating Energy in SHO

Pendulums

object, we also know its velocity and acceleration:

Damped Oscillations

Displacement

x(t) = xmcos(wt+ @) el T
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Simple Harmonic
Oscillator (SHO)

The maximum velocity and acceleration depend Energy in SHO

Pendulums

on the frequency and the maximum displacement.

Damped Oscillations
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Simple Harmonic Oscillator (SHO)

Simple harmonic motion is generated by a linear

restoring force:
d*x
F=—kx=ma=m—~
dr?
k
! ! -
—x, x=0 +X,
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Simple harmonic motion is generated by a linear
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Simple Harmonic Oscillator (SHO)

Simple harmonic motion is generated by a linear

Simple Harmonic
Oscillator (SHO)

reStorlng force“ Energy in SHO
Pendulums
d2x Damped Oscillations
F=—kx=ma=m—s
ar?
d>x  k
a7t x=0
dt m
k
m
| | 1,
! !
=X, x=0 +x,,

The solution to this differential equation:
x(t) = xp cos(\/k/mt + ¢)
(sow = \/k/m)
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The motion of a SHO is related to motion in a SIRIGHoNTS
Oscillator (SHO)
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Simple Harmonic Oscillator (SHO)

The motion of a SHO is related to motion in a

circle.

oL+
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x(t) = xpcos(wt+ @)
v(t) = —wxysin(wr+ @)
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The motion of a SHO is related to motion in a Simple Harmonic

circle.

Oscillator (SHO)

Energy in SHO

Pendulums

Damped Oscillations
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Lecture Question 15.1

The graph below represents the oscillatory motion of three
different springs with identical masses attached to each.
Which of these springs has the smallest spring constant?
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Energy in SHO

Pendulums
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Graph 1
Graph 2

74\
N\
)/ \ /
/ A\ /
¢ Time (sec)
“Graph 3

Displacement x (cm)

(a) Graph 1
(b) Graph 2
(¢) Graph 3
(d) Both 2 and 3 are smallest and equal

(e) All three have the same spring constant.
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A spring stores potential energy. To find it, Oscillator (SHO)
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calculate the work the spring force does:
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© 1 1
AU = -W = —/ (—kx)dx = 5kx% — Ekx%
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A spring stores potential energy. To find it, Oscillator (SHO)

Energy in SHO

calculate the work the spring force does:
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© 1 1
AU = -W = —/ (—kx)dx = 5kx% — Ekx%

1

A spring compressed by x stores energy U = %kxz.




Energy in SHO
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As a mass oscillates, the energy transfers from e
’endulums

kinetic to potential energy.

Energy

Damped Oscillations
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Energy in SHO
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As a mass oscillates, the energy transfers from e
’endulums

kinetic to potential energy.
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At the ends of the motion, velocity is zero, K is zero and U

1S maximum.




Energy in SHO
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5 Ult) + K(1) . Ulx) + K(x) Energy in SHO
Ec‘ U(1) Ut Pendulums
2 & Damped Oscillations
= K(x)
K()
0 /2 r X 0 b,
The energy oscillates between:
Lo 1o o
U = ikx = Ekxm cos”(wr + ¢)
Lo 1 5 v
K = SV = 5w, sin®(wt + ¢)
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5 Ult) + K(1) . Ulx) + K(x) Energy in SHO
Ec‘ U(1) Ut Pendulums
::: Ec Damped Oscillations
= K(x)
K()
0 /2 r X 0 b,
The energy oscillates between:
Lo 1o o
U = ikx = Ekxm cos”(wr + ¢)
Lo 1 5 v
K = SV = 5w, sin®(wt + ¢)
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Pendulums

A simple pendulum is a ball on a string. It acts

like a SHO for small angles.
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The restoring force:
F = —mgsinf ~ —mgl

I = mL?
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For small angles (0 < 20°), a pendulum is like a
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Pendulums

For small angles (0 < 20°), a pendulum is like a

simple harmonic oscillator.
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Pendulums

For small angles (0 < 20°), a pendulum is like a

simple harmonic oscillator.

d’o
T=—(mgh)L = I(XZIW
d%0
av m;"Lg -0
dr? 1
~—~—
w2

0(t) = Opcos(wt+ @)
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Pendulums
Simple Harmonic
Oscillator (SHO)
For small angles (0 < 20°), a pendulum is like a Energy in SHO
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simple harmonic oscillator.
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d’o
T=—(mgh)L = I(XZIW
d%0
av m;"Lg -0
dr? 1
~—~—
w2

0(t) = Opcos(wt+ @)

o = VgLl = 3L




Pendulums

For small angles (0 < 20°), a pendulum is like a

simple harmonic oscillator.

d*o
T=—(mgh)L = I(XZIW
d*o L
av .m0
dr? I
~—~—
w2

0(t) = Opcos(wt+ @)
o = mgLl= L
T = 1/f=2n/w=2m\/L/g
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Pendulums

For a physical pendulum with moment of inertia 1

and small oscillations,

Fysin®
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Pendulums

For a physical pendulum with moment of inertia 1

and small oscillations,

Fysin®
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Pendulums

For a physical pendulum with moment of inertia 1

and small oscillations,

Fysin®

Chapter 15 - Oscillations

Simple Harmonic
Oscillator (SHO)

Energy in SHO
Pendulums

Damped Oscillations




Pendulums

For a physical pendulum with moment of inertia 1

and small oscillations,

Fysin®

w = +/mgh/l
T = 1/f=2n/w=2n\/I/mgh
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Pendulums

A torsion pendulum is a symmetric object where

the restoring torque arises from a twisted wire.

Fixed end

Suspension wire

Reference line

T = —kb (similar to spring)
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Pendulums

A torsion pendulum is a symmetric object where

the restoring torque arises from a twisted wire.

Fixed end

Suspension wire

Reference line

T = —kb (similar to spring)
d*0 K
2240 =
az "1 0
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Pendulums

A torsion pendulum is a symmetric object where

the restoring torque arises from a twisted wire.

Fixed end

Suspension wire

Reference line

T = —kb (similar to spring)
d*0 K
w1
w = k[

6 = 0
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Pendulums

A torsion pendulum is a symmetric object where

the restoring torque arises from a twisted wire.

Fixed end

Suspension wire

Reference line

T = —kb (similar to spring)
d*0 K
2240 =
az "1 0

w = k[

T = 1/)f =2njw=2mI/k
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Chapter 15

Lecture Question 15.3
A grandfather clock, which uses a pendulum to keep
accurate time, is adjusted at sea level. The clock is then
taken to an altitude of several kilometers. How will the
clock behave in its new location?

(a) The clock will run slow.

(b) The clock will run fast.

(¢) The clock will run the same as it did at sea level.

(d) The clock cannot run at such high altitudes.
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Damped Oscillations

Damped simple harmonic motion is the result of
oscillatory behavior in the presence of a retarding

force.

x Rigid support

Springiness, k

Vane
— Damping, b

Fd = —by

with b the damping constant.
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Damped Oscillations

Applying Newton’s Second Law to this situation,

Foet = ma
—kx—bv = ma
d*x  bdx k
0 = —+ + —x

a2 " mdt ' m
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Damped Oscillations

Applying Newton’s Second Law to this situation,

Foet = ma
—kx—bv = ma
d*x  bdx k
0 = —+ + —x

a2 " mdt ' m

The solution:

x(t) = xpe P cos(w't + @)

e
Y L
- m  4m?
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Simple Harmonic

For damped harmonic motion, the oscillations

will die out over time.
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Damped Oscillations

Simple Harmonic
For damped harmonic motion, the oscillations QTR

Energy in SHO

will die out over time.

Pendulums

Damped Oscillations
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Side note: w' = \/ £ — L is only valid if k/m > b?/4m?.

What happens if k/m < b?/4m*?




Damped Oscillations

If an oscillator of angular frequency w is driven
by an external force at a frequency wy, then the
response will also be at wy.

A

P Hand moves with
the driving frequency.

Block responds at
. the same frequency
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Damped Oscillations

If an oscillator of angular frequency w is driven Simple Harmonic
by an external force at a frequency wy, then the Oscllator (SHO)
response will also be at wy.
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PR Focos(wt) — x(t) = Acos(wt + ¢)

P Hand moves with
the driving frequency.

Block responds at
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Damped Oscillations

If an oscillator of angular frequency w is driven
by an external force at a frequency wy, then the
response will also be at wy.

d*x  k
PR Focos(wt) — x(t) = Acos(wt + ¢)

P Hand moves with
the driving frequency.

Block responds at
. the same frequency

The amplitude A depends on the relationship between wy
and w.
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Damped Oscillations

If a damped oscillator is driven at its natural
frequency, the system is on resonance and the
oscillations are maximum.

b=50g/s
(least
damping)

b=T0a/s

b=140g/s

Amplitude

0.6 0.8 1.0 1.2 1.4
0,/0
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If a damped oscillator is driven at its natural Oscillator (SHO)
frequency, the system is on resonance and the Energy in SHO
OSCillations are maximum. Pendulums

Damped Oscillations

b=50g/s
(least
damping)

b=T0a/s

b=140g/s

Amplitude

0.6 0.8 1.0 1.2 1.4
0,/0

The width of the resonance peak depends on the damping
constant.
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