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Introduction Mutual Information (quantum)

Mutual information and the Shannon entropy were first laid out in 1948
[1] and have since fueled research in many areas of classical and - For a quantum state p:
quantum information theory. Due to nonclassical correlations, the o I(p) = S(p™) +S(p”) = S(p)
information capacity of quantum systems can exceed that of classical o J(p)qury = S(p™) — S(p|{1I;’}) 17 ) TIP
systems in some practical applications. Quantifying quantum correlations e S(P{IL'}) Zp (ko) and M = T:[,:HB]

IS therefore critical to understanding when and how they may be used e Jis more compllcated due to the effect prOJectlve measurements
advantageously in information processing tasks. has on quantum states

There exist two, classically equivalent definitions of mutual information: |, « Jrepresents the classical correlations, but requires maximization
which is based upon joint measurements, and J, which is based upon over all possible complete, projective measurements

conditional measurements. In the quantum framework, these two e |and J are not the same for all states

definitions are not equivalent. Their difference is the “qguantum discord” [2] « Key examples:

which is a measure of quantum correlations. The quantity J therefore « Jis maximal (J = 1) for the singlet state in any basis

represents only the classical part of the correlations between two parties.  Jis maximal for the maximally correlated mixed state in a single

However, we show that it is still possible to extract an entanglement basis | ,
signature from J. « What if we sum J measured in three mutually unbiased bases (e.g.

HV, AD and RL)?

Shannon and von Neumann Entropy Results

« Shannon entropy ¢ MJC — JC (P){a,b} + JC (p){a’ab!} + JC (p){a”,b”}

« {q,a',a’} are, e.qg., the polarization settings for qubit A, and {b,b’,b"}
for qubit B

=~ Y p(a) log pla * The subscript C indicates the classical measure

a€A * This measure is bounded by 1 for separable states (based upon
simulation)

« Can reach 3 for maximally entangled states

 |s a measure of the uncertainty of a random variable
A random variable A with probability distribution p(a) gives

* Measured in “bits” if log is base 2
« Evenly distributed probabilities give a higher entropy
« von Neumann Entropy
* |s the quantum analog of Shannon entropy |
: : : | o Hollow circles — maximally correlated
« A quantum state described by the density matrix p St mixed state (fidelity = 0.94)
has von Neumann entropy

_ <L * Y | Solid circles — singlet state
« S(p) = —Tr(plog p) . (fidelity = 0.92)

« Reduces to Shannon entropy upon projective measurements T NSRRI Lines — predictions from tomographic

reconstruction
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Mutual Information Conclusion

. Consider two random variables: Usi.ng classical mutuall information, with local measurements on
- A and B with probability distributions p(a) and p(b) spa.ce.-llke separa.lted qubits, we have shown. how to _construct a
- The joint probability is p(a,b) sufficient condition for entanglement which requwes. fewer

« The joint entropy s simply rr?easur.ements than a standard CHSH .test [3]. We havg iIncluded

H(A, B) ZZ b1 b simulations of various states [4] and experimental data of a singlet state
° p(a,b)logp(a,b) | .
a€AbeB and a maximally correlated mixed state created from spontaneous

e The conditiona/entropy is parametric down conversion in a nonlinear crystal.

H(A|B) = pLa, | References
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